Free Download Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio
Die Anwesenheit von Deep Learning (Adaptive Computation And Machine Learning), By Ian Goodfellow Yoshua Bengio in Materialchecklisten des Lesens kann eine neue Art und Weise sein, dass Sie das gute Analyse Produkt verwendet. Diese Quelle ist ebenfalls ausreichend von jedermann zu überprüfen. Es wird nicht dazu zwingen, mit etwas kraftvoll oder eintönig zu kommen. Sie können viel bessere Lektion nehmen in eine gute Möglichkeit zu sein. Dies ist nicht eine Art große Publikation, die komplizierten Sprachen bietet. Dies ist ein einfaches Buch, das Sie sich sorgen können. So genau, wie wichtig das Buch zu bewerten ist.

Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio

Free Download Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio
Zeigen Sie Ihre ausgezeichnete Aktivität Ihr Leben zu verdienen besser aussehen. Warten Sie nicht nur viel besser aussehen, aber genau grandios ausreichend! Gehen Sie davon aus, dass viele Menschen so von Ihnen, die großen Routinen zu bewundern? Natürlich kann es nur einige der Vorteile, die Sie erhalten könnten, wenn diese Art von Zeitvertreib ist. Und nun, genau das, was über die Analyse? Ist sein Ihr Hobby? Nun, Buch Check-out ist stumpf, werden Sie davon ausgehen, dass so? In der Tat ist das nicht.
Do you require the literature resources? Regulation or politics books, faiths, or scientific researches? Well, to prove it, juts seek the title or theme that you need based upon the classifications supplied. Nonetheless, previous, you are here in the good web site where we show the Deep Learning (Adaptive Computation And Machine Learning), By Ian Goodfellow Yoshua Bengio as one of your sources. Also this is not too known as much; you could recognize as well as recognize why we actually advise you to read this following publication.
This book is truly conceptualized to provide not just the current life however likewise future. By providing the benefits of this Deep Learning (Adaptive Computation And Machine Learning), By Ian Goodfellow Yoshua Bengio, possibly it will lead you to not be question of it. Be among the terrific visitors on the planet that always read the excellent quality book. With the certified books, you can sharpen your mind as well as idea. This is not just concerning the point of view; it's everything about the truth.
Nevertheless, even this publication is created based on the fact, one that is very intriguing is that the author is very smart to earn this book very easy to review as well as understand. Appreciating the excellent readers to always have reading practice, every writer serves their ideal in using their ideas and jobs. That you are and just what you are does not become any kind of large problem to get this publication. After seeing this website, you can examine more regarding this book and afterwards discover it to understand reading.

Pressestimmen
[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.--Daniel D. Gutierrez, insideBIGDATA
Über den Autor und weitere Mitwirkende
Ian Goodfellow is Research Scientist at OpenAI. Yoshua Bengio is Professor of Computer Science at the Université de Montréal. Aaron Courville is Assistant Professor of Computer Science at the Université de Montréal.
Produktinformation
Gebundene Ausgabe: 800 Seiten
Verlag: The MIT Press (1. Januar 2017)
Sprache: Englisch
ISBN-10: 0262035618
ISBN-13: 978-0262035613
Größe und/oder Gewicht:
23,1 x 18,3 x 2,8 cm
Durchschnittliche Kundenbewertung:
3.4 von 5 Sternen
24 Kundenrezensionen
Amazon Bestseller-Rang:
Nr. 54 in Fremdsprachige Bücher (Siehe Top 100 in Fremdsprachige Bücher)
I bought this book with quite high hopes on getting a better understanding of deep learning methods. Since many authors have worked on this book many chapters are quite detailled and full of valuable clues on network design and training. In particular, the views on regularization, optimization and the actual 'practitioners guide' chapter are very useful and worth reading (for beginners and seniors alike). However, many of these topics are covered in other books as well and given merely in the context of neural networks. The downside of many chapters is a complete lack of solid mathematical formulation. Sometimes definitions are made, but nothing follows. Hypothesizing, some empirical observations, nothing theoretical.I don't want to blow the 'its not science' horn, here. - Deep Learning has clearly proven to work many times, instead my criticism is that the book falls a bit short to prepare you for many of the complex theories that appear in many scientific publications.In short: this book gives a good overview on machine learning and will certainly help you in applying the techniques in practice. It will not provide you with a conclusive mathematical background.
The book may be the best, most complete and most up to date textbook in the field.However, it is lengthy with lots of theory. Yet lots of chapters are focused on old stuff and specially techniques that authors are known for it. I would prefer a book with better practical coverage and specially industry trends.I am not expecting a code cookbook, as this is a text book, nor a programming guide. However on the other hand, I would prefer to focus on well stablished theories and practices as opposed to a full history of all attempts in the field. There are many places that articles are referred that did this and may be resulted on that, but they have been practically all dead ends which wastes reader times.All in all, this is a great book, but I look forward better ones.
This book thries to give an overview over what has happened in the field of Deep Learning so far. And I think it succeeds. Many readers, also on Amazon, criticize the lack of theory. And they are right. But this is not especially the fault of the authors -- there *is* hardly any theory in the field of Neural Networks. For decades, Neural Network "research" went on like this: turn on the computer, load a model, train the model, test the model, change something, train the changed model, test the changed mode, and so on. The book only reflects this: Why does the nondifferentiable (at 0) ReLU work better than differentiable alternatives? Not the slightest clue. Hey, but it works! Why does Stochastic Gradient seem to be such a big cornerstone of Neural network training? Well...perhaps it enforces flat minima .. but, honestly, not really a clue either. But, hey, it works! It is a triumph of experimentation over reasoning: Every dog has its day, and currently Neural Networks perform better than other methods in many fields of pattern recognition. Let's see what the future brings ...
Nach einer Zusammenfassung der mathematischen Grundlagen (Lineare Algebra, Wahrscheinlichkeitsrechnung und Statistik, Numerische Mathematik) bietet dieses Werk einen breiten Überblick über maschinelles Lernen und neuronale Netzwerke. Dabei führt das Werk an die aktuell verwendeten Verfahren und Modelle heran.Eine exzellente Einführung in dieses Fachgebiet!
Das Buch legt am Anfang die notwendigen mathematischen Grundlagen - Matritzenrechnung und Statistik. Wer einen soliden und tiefen Einstieg in das Thema benötigt oder daran interessiert ist, ist mit diesem Buch gut beraten. Es werden alle wichtige Themen ansprechend und gut erklärt. Ich kann das Buch sehr weiterempfehlen, wenn ein gewisses mathematisches Verständnis vorhanden ist.
Meiner Meinung nach eine der besten Einführungen in das Thema. Die mathematischen Grundlagen sind ebenso beschrieben, wie Optimierungsverfahren oder die wichtigsten Modelle. Es sind die Algorithmen zwar gut beschrieben, aber echte Codebeispiele fehlen. Wer sich damit spielen will, sollte die Theorie mittels PyTorch, Tensorflow oder einem anderen Framework in die Praxis umsetzen.
A copy of the original book with invalid graphs.
Einfach eines der breitesten und tiefsten Buecher in dem Bereich. Kann man nur empfehlen sowohl fuer Anfaenger als auch fuer Profis.
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio PDF
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio EPub
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio Doc
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio iBooks
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio rtf
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio Mobipocket
Deep Learning (Adaptive Computation and Machine Learning), by Ian Goodfellow Yoshua Bengio Kindle
0 comments:
Post a Comment